Hidden Clicker Hidden Clicker
首頁 > 館藏查詢 > 書目資料
後分類 X

目前查詢

歷史查詢

Machine learning in clinical neuroscience :foundations and applications /
切換:
  • 簡略
  • 詳細(MARC)
  • ISBD
  • 分享

Machine learning in clinical neuroscience :foundations and applications /

紀錄類型 : 書目-語言資料,印刷品: 單行本

其他作者 : Staartjes, Victor E.,

出版項 : Cham, Switzerland :Springer,[2022]

面頁冊數 : 1 online resource (VII, 361 pages . 133 illustrations, 80 illustrations in color.)

內容註 : Preface -- Foundations of machine learning-based clinical prediction modeling -- Part I: Introduction and general principles -- Foundations of machine learning-based clinical prediction modeling -- Part II: Generalization and Overfitting -- Foundations of machine learning-based clinical prediction modeling -- Part III: Evaluation and other points of significance -- Foundations of machine learning-based clinical prediction modeling -- Part IV: A practical approach to binary classification problems -- Foundations of machine learning-based clinical prediction modeling -- Part V: A practical approach to regression problems -- Supervised and unsupervised learning / clustering -- Introduction to Bayesian Modeling -- Introduction to Deep Learning -- Overview of algorithms for machine-learning based clinical prediction modelling -- Foundations of feature selection in clinical prediction modelling -- Dimensionality reduction: Foundations and applications in clinical neuroscience -- Machine learning-based survival modeling: Foundations and Applications -- Making clinical prediction models available: A brief introduction -- Machine Learning-based Clustering Analysis: Foundational Concepts, Methods, and Applications -- Introduction to Machine Learning in Neuroimaging -- Overview of machine learning algorithms in imaging -- Foundations of classification modeling based on neuroimaging -- Foundations of lesion-symptom mapping using machine learning -- Foundations of Machine Learning-Based Segmentation in Cranial Imaging -- Foundations of lesion detection using machine learning in clinical neuroimaging -- Foundations of multiparametric brain tumor imaging characterization -- Radiomics in clinical neuroscience -- Overview -- Radiomic feature extraction: Methodological Foundations -- Complexity and interpretability in machine vision -- Foundations of intraoperative anatomical recognition using machine vision -- Machine Vision Foundations -- Natural Language Processing: Foundations and Applications in Clinical Neuroscience -- Foundations of Time Series Analysis -- Overview of algorithms for natural language processing and time series analysis -- History of machine learning in neurosurgery -- The AI doctor -- considerations for AI-based medicine -- Ethics of Machine Learning-Based Predictive Analytics -- Predictive analytics in clinical practice: Pro and contra -- Review of machine vision applications in neuroophtalmology -- Prediction Model -- Prediction Model -- Prediction Model -- Topical Review of machine learning in intracranial aneurysm surgery -- Review of applications of machine learning in neuroimaging -- Prediction Model -- An overview of machine learning applications in the Neurointensive Care Unit -- Prediction Model -- Review of natural language processing in the clinical neurosciences -- Review of big data applications in the clinical neurosciences -- Radiomic features associated with extent of resection in glioma surgery.

標題 : Neurosciences - Data processing. -

標題 : Machine learning. -

標題 : Artificial intelligence - Medical applications. -

標題 : Machine Learning -

ISBN : 9783030852924

ISBN : 303085292X

LEADER 04577nam 2200385 i 4500

001 52213

003 NhCcYBP

005 20231201142128.6

006 m o d

007 cr cnu|||unuuu

008 211209s2022 sz a o 000 0 eng d

020 $a9783030852924$q(electronic bk.)

020 $a303085292X$q(electronic bk.)

020 $z9783030852917$q(print)

020 $z3030852911

024 7 $a10.1007/978-3-030-85292-4$2doi

035 $aebs3114191

040 $aNhCcYBP$cNhCcYBP

041 $aeng

050 4$aQP357.5$b.M33 2022

072 7$aMNN$2bicssc

072 7$aMED085010$2bisacsh

072 7$aMNN$2thema

082 04$a612.80285/631$223

245 00$aMachine learning in clinical neuroscience :$bfoundations and applications /$cVictor E. Staartjes, Luca Regli, Carlo Serra, editors.

264 1$aCham, Switzerland :$bSpringer,$c[2022]

300 $a1 online resource (VII, 361 pages . 133 illustrations, 80 illustrations in color.)

336 $atext$btxt$2rdacontent

337 $acomputer$bc$2rdamedia

338 $aonline resource$bcr$2rdacarrier

490 1 $aActa Neurochirurgica Supplement,$x2197-8395 ;$v134

505 0 $aPreface -- Foundations of machine learning-based clinical prediction modeling -- Part I: Introduction and general principles -- Foundations of machine learning-based clinical prediction modeling -- Part II: Generalization and Overfitting -- Foundations of machine learning-based clinical prediction modeling -- Part III: Evaluation and other points of significance -- Foundations of machine learning-based clinical prediction modeling -- Part IV: A practical approach to binary classification problems -- Foundations of machine learning-based clinical prediction modeling -- Part V: A practical approach to regression problems -- Supervised and unsupervised learning / clustering -- Introduction to Bayesian Modeling -- Introduction to Deep Learning -- Overview of algorithms for machine-learning based clinical prediction modelling -- Foundations of feature selection in clinical prediction modelling -- Dimensionality reduction: Foundations and applications in clinical neuroscience -- Machine learning-based survival modeling: Foundations and Applications -- Making clinical prediction models available: A brief introduction -- Machine Learning-based Clustering Analysis: Foundational Concepts, Methods, and Applications -- Introduction to Machine Learning in Neuroimaging -- Overview of machine learning algorithms in imaging -- Foundations of classification modeling based on neuroimaging -- Foundations of lesion-symptom mapping using machine learning -- Foundations of Machine Learning-Based Segmentation in Cranial Imaging -- Foundations of lesion detection using machine learning in clinical neuroimaging -- Foundations of multiparametric brain tumor imaging characterization -- Radiomics in clinical neuroscience -- Overview -- Radiomic feature extraction: Methodological Foundations -- Complexity and interpretability in machine vision -- Foundations of intraoperative anatomical recognition using machine vision -- Machine Vision Foundations -- Natural Language Processing: Foundations and Applications in Clinical Neuroscience -- Foundations of Time Series Analysis -- Overview of algorithms for natural language processing and time series analysis -- History of machine learning in neurosurgery -- The AI doctor -- considerations for AI-based medicine -- Ethics of Machine Learning-Based Predictive Analytics -- Predictive analytics in clinical practice: Pro and contra -- Review of machine vision applications in neuroophtalmology -- Prediction Model -- Prediction Model -- Prediction Model -- Topical Review of machine learning in intracranial aneurysm surgery -- Review of applications of machine learning in neuroimaging -- Prediction Model -- An overview of machine learning applications in the Neurointensive Care Unit -- Prediction Model -- Review of natural language processing in the clinical neurosciences -- Review of big data applications in the clinical neurosciences -- Radiomic features associated with extent of resection in glioma surgery.

533 $aElectronic reproduction.$bIpswich, MA$nAvailable via World Wide Web.

588 0 $aOnline resource; title from PDF title page (SpringerLink, viewed December 9, 2021).

650 0$aNeurosciences$xData processing.$3101147

650 0$aMachine learning.$390273

650 0$aArtificial intelligence$xMedical applications.$388948

650 2$aMachine Learning$394268

700 1 $aStaartjes, Victor E.,$eeditor.$3101148

700 1 $aRegli, L.$q(Luca),$eeditor.$3101149

700 1 $aSerra, Carlo,$eeditor.$3101150

710 2 $aEBSCOhost$387894

776 08$iPrint version:$tMachine learning in clinical neuroscience.$dCham, Switzerland : Springer, [2022]$z3030852911$z9783030852917

830 0$aActa neurochirurgica.$pSupplement ;$v134.$x2197-8395$3101146

856 40$uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3114191$zClick to View (限總院院內)

Machine learning in clinical neuroscience :foundations and applications /Victor E. Staartjes, Luca Regli, Carlo Serra, editors. - 1 online resource (VII, 361 pages . 133 illustrations, 80 illustrations in color.) - Acta Neurochirurgica Supplement,1342197-8395 ;. - Acta neurochirurgica.Supplement ;134..

Preface -- Foundations of machine learning-based clinical prediction modeling -- Part I: Introduction and general principles -- Foundations of machine learning-based clinical prediction modeling -- Part II: Generalization and Overfitting -- Foundations of machine learning-based clinical prediction modeling -- Part III: Evaluation and other points of significance -- Foundations of machine learning-based clinical prediction modeling -- Part IV: A practical approach to binary classification problems -- Foundations of machine learning-based clinical prediction modeling -- Part V: A practical approach to regression problems -- Supervised and unsupervised learning / clustering -- Introduction to Bayesian Modeling -- Introduction to Deep Learning -- Overview of algorithms for machine-learning based clinical prediction modelling -- Foundations of feature selection in clinical prediction modelling -- Dimensionality reduction: Foundations and applications in clinical neuroscience -- Machine learning-based survival modeling: Foundations and Applications -- Making clinical prediction models available: A brief introduction -- Machine Learning-based Clustering Analysis: Foundational Concepts, Methods, and Applications -- Introduction to Machine Learning in Neuroimaging -- Overview of machine learning algorithms in imaging -- Foundations of classification modeling based on neuroimaging -- Foundations of lesion-symptom mapping using machine learning -- Foundations of Machine Learning-Based Segmentation in Cranial Imaging -- Foundations of lesion detection using machine learning in clinical neuroimaging -- Foundations of multiparametric brain tumor imaging characterization -- Radiomics in clinical neuroscience -- Overview -- Radiomic feature extraction: Methodological Foundations -- Complexity and interpretability in machine vision -- Foundations of intraoperative anatomical recognition using machine vision -- Machine Vision Foundations -- Natural Language Processing: Foundations and Applications in Clinical Neuroscience -- Foundations of Time Series Analysis -- Overview of algorithms for natural language processing and time series analysis -- History of machine learning in neurosurgery -- The AI doctor -- considerations for AI-based medicine -- Ethics of Machine Learning-Based Predictive Analytics -- Predictive analytics in clinical practice: Pro and contra -- Review of machine vision applications in neuroophtalmology -- Prediction Model -- Prediction Model -- Prediction Model -- Topical Review of machine learning in intracranial aneurysm surgery -- Review of applications of machine learning in neuroimaging -- Prediction Model -- An overview of machine learning applications in the Neurointensive Care Unit -- Prediction Model -- Review of natural language processing in the clinical neurosciences -- Review of big data applications in the clinical neurosciences -- Radiomic features associated with extent of resection in glioma surgery.


Electronic reproduction.
Ipswich, MA





Available via World Wide Web.

ISBN: 9783030852924

Standard No.: 10.1007/978-3-030-85292-4doiSubjects--Topical Terms:

101147
Neurosciences
--Data processing.

LC Class. No.: QP357.5 / .M33 2022

Dewey Class. No.: 612.80285/631
  • 館藏(0)
  • 心得(0)
  • 標籤
  • 相同喜好的讀者(0)
  • 相關資料(0)

歡迎將此書加入書櫃

Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker Hidden Clicker